

Design and Fabrication of High Precision Masks for TPF Coronagraph

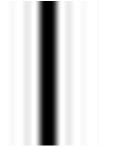
Bala K. Balasubramanian
Daniel Wilson, Brian Kern, Victor White
Jet Propulsion Lab
California Institute of Technology
Pasadena, CA 91109

Ruslan Belikov*
Princeton University
* Currently at NASA Ames Research Center

Exo-Planet Science & Technology Fair Jet Propulsion Lab Feb 22, 2008

Objectives

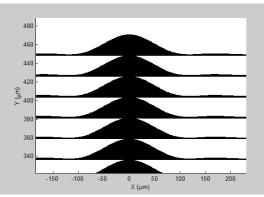
- Technology Development and Maturation
 - High Energy e-beam Writing
 - Patterning and Microlithography
 - Deep Reactive Ion Etching
 - Profiled Deposition
- Design, Fabricate, Characterize and Test various masks
 - Image Plane Masks
 - Shaped Pupil Masks
 - Vortex Masks
- Demonstrate performance in laboratory test beds
 - HCIT Tests

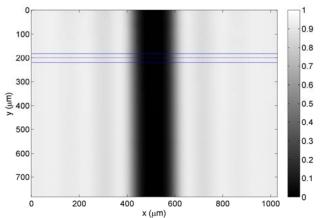


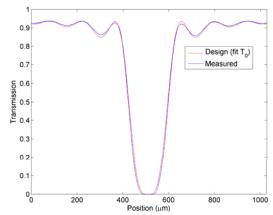
IPF.

Gray Scale and Binary "Band-limited" Masks

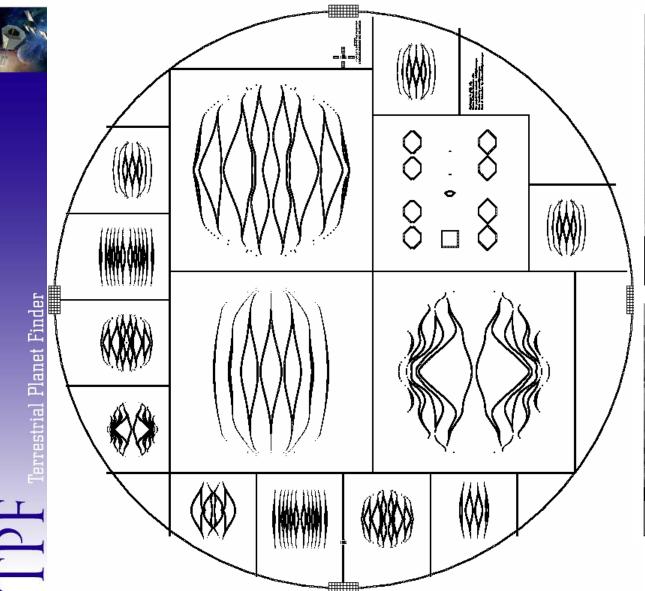
Terrestrial Planet Finder




Conceptual transmission images of the inner region of (a) one- and (b) two-dimensional gray scale 1-sinc² type "band-limited" masks


Examples of continuous binary mask and sampled binary mask fabricated and tested at JPL

Close-up view of one dimensional binary 1-sinc² type mask pattern; black areas are made of perfectly opaque and etched metal layer


Measured intensity-transmission image of a 1-sinc² type one-dimensional gray scale mask fabricated on HEBS glass at JPL. Lines indicate the region of profile averaging for cross-section data shown in figure below.

Cross-section profile of 1-sinc² mask (50-row average between lines in top figure. A fit of the design function $T(x) = T_0[1 - sinc^2(x/w)]^2$ with maximum transmittance $T_0 = 0.935$ as a parameter is shown for comparison

Shaped Pupil Masks Princeton Designs

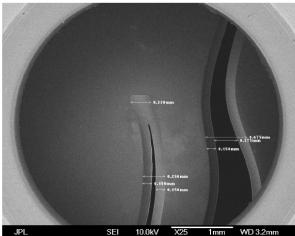


Figure 4. Typical shape and image of apertures of an actual mask fabricated by DRIE technique

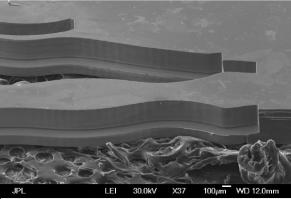
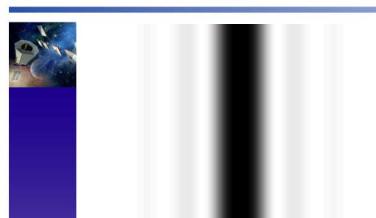
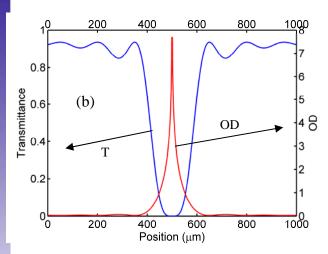


Figure 5. A mask slit seen under SEM showing recessed steps surrounding the slits

Proc. of SPIE Vol. 6265 62653N-4

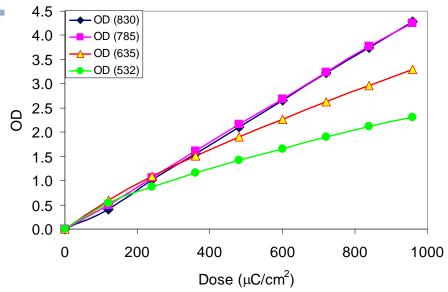


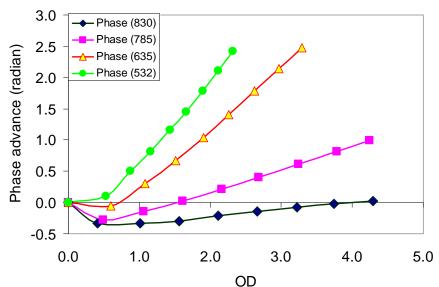

Terrestrial Planet Finder

PPF

3/3/2008

HEBS Glass Image Plane Masks





A typical 1-dimensional gray scale mask transmission image (a) and cross- section transmittance and OD profiles (b).

Such masks are fabricated with electron beam writing technique at JPL

Appl. Optics, Jan (2008), pp. 116-125

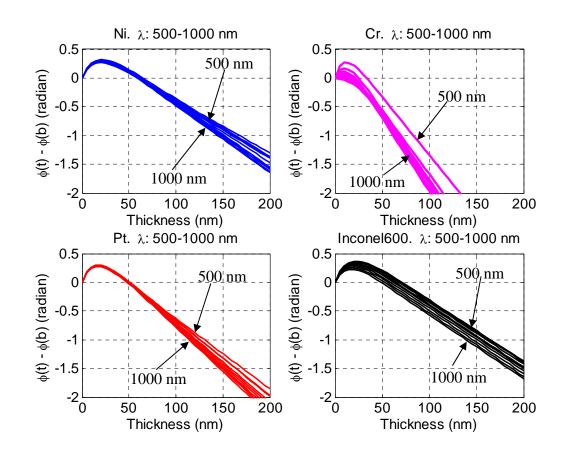
Measured optical density (OD) and phase of a HEBS glass material which shows a large variation with wavelength

Bala K. Balasubramanian

Alternative Mask Materials

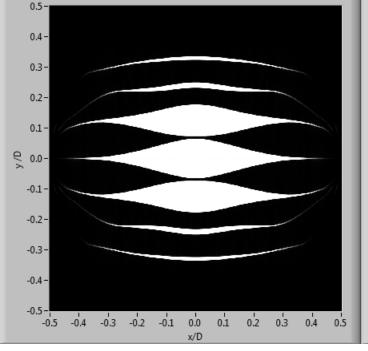
Terrestrial Planet Finder

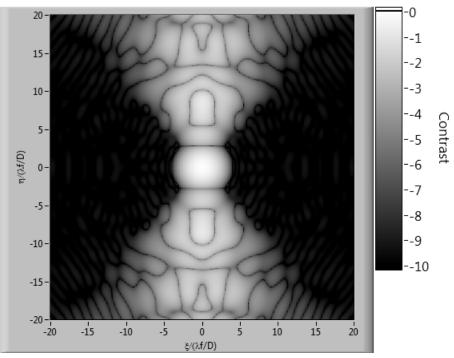
Candidate Materials for Profiled Metallic Masks Low Dispersion Ni, Pt and Inconel vs. High Dispersion Cr


Appl. Optics, Jan (2008), pp. 116-125

National Aeronautics and Space

Phase Dispersion





Ripple3 Shaped Pupil Mask and PSF High Contrast Dark Zones

Shaped Pupil Mask fabricated at JPL employing Deep Reactive Ion Etching Technique

PSF and dark zones obtained with this mask

Ref: Belikov et al., SPIE 6693-36 (2007)

Key Results

National Aeronautics and Space

Jet Propulsion Laboratory
California Institute of Technology

- ➤ Image plane masks employing High Energy Beam Sensitive (HEBS) glass have been fabricated successfully at JPL.
- ➤ With HEBS image masks, coronagraph contrast of ~2.5x10⁻¹⁰ has been demonstrated with monochromatic light in the JPL High Contrast Imaging Testbed (HCIT).
- \triangleright More recently, ~2x10⁻⁹ contrast has been achieved in10% broadband light with a metallic mask.
- ➤ Also, free-standing shaped pupil masks designed by Princeton University have been fabricated successfully at JPL; a record contrast of 2.4x10⁻⁹ with 10% broadband light has been demonstrated (Belikov et al) with such a shaped pupil mask.

Summary

- Significant advancements have been accomplished in the design and fabrication of masks
- Further work in progress to develop better masks for broadband performance

Publications

- K. Balasubramanian, Band limited image plane masks for Terrestrial Planet Finder Coronagraph: materials and designs for broadband performance, Appl. Optics, Jan (2008), pp. 116-125
- K. Balasubramanian, E. Sidick, D.W. Wilson, D. J. Hoppe, S. B. Shaklan, J. T. Trauger., "Band-limited masks for TPF coronagraph", C.R. Physique, 8, (2007), 288-297, doi:10.1016/j.crhy.2007.03.001
- K. Balasubramanian, D. J. Hoppe, P. G. Halverson, D. W. Wilson, P. M. Echternach, F. Shi, A. E. Lowman, A. F. Niessner, J. T. Trauger, and S. B. Shaklan., "Occulting Focal Plane Masks for Terrestrial Planet Finder Coronagraph Design, Fabrication, Simulations and Test Results", Proc. of IAU Colloquium 200, Direct Imaging of Exo-Planets, Cambridge University Press, (2006) pp. 405-409.
- Ruslan Belikov, Amir Give'on, Brian Kern, Eric Cady, Michael Carr, Stuart Shaklan, Kunjithapatham Balasubramanian, Victor White, Pierre Echternach, Matt Dickie, John Trauger, Andreas Kuhnert, N. Jeremy Kasdin, Demonstration of High Contrast in 10% Broadband Light with the Shaped Pupil Coronagraph, Proc. SPIE 6693-36 (2007)

Acknowledgements

This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Reference herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

Thanks to Stuart Shaklan, Daniel Hoppe, Pierre Echternach, Matthew Dickie, Wesley Traub, John Trauger, Marie Levine, Andreas Kuhnert (JPL) and Jeremy Kasdin (Princeton Univ.)